Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Transl Med ; 22(1): 412, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693516

ABSTRACT

BACKGROUND: Thromboinflammation involving platelet adhesion to endothelial surface-associated von Willebrand factor (VWF) has been implicated in the accelerated progression of non-culprit plaques after MI. The aim of this study was to use arterial endothelial molecular imaging to mechanistically evaluate endothelial-associated VWF as a therapeutic target for reducing remote plaque activation after myocardial infarction (MI). METHODS: Hyperlipidemic mice deficient for the low-density lipoprotein receptor and Apobec-1 underwent closed-chest MI and were treated chronically with either: (i) recombinant ADAMTS13 which is responsible for proteolytic removal of VWF from the endothelial surface, (ii) N-acetylcysteine (NAC) which removes VWF by disulfide bond reduction, (iii) function-blocking anti-factor XI (FXI) antibody, or (iv) no therapy. Non-ischemic controls were also studied. At day 3 and 21, ultrasound molecular imaging was performed with probes targeted to endothelial-associated VWF A1-domain, platelet GPIbα, P-selectin and vascular cell adhesion molecule-1 (VCAM-1) at lesion-prone sites of the aorta. Histology was performed at day 21. RESULTS: Aortic signal for P-selectin, VCAM-1, VWF, and platelet-GPIbα were all increased several-fold (p < 0.01) in post-MI mice versus sham-treated animals at day 3 and 21. Treatment with NAC and ADAMTS13 significantly attenuated the post-MI increase for all four molecular targets by > 50% (p < 0.05 vs. non-treated at day 3 and 21). On aortic root histology, mice undergoing MI versus controls had 2-4 fold greater plaque size and macrophage content (p < 0.05), approximately 20-fold greater platelet adhesion (p < 0.05), and increased staining for markers of platelet transforming growth factor-ß1 signaling. Accelerated plaque growth and inflammatory activation was almost entirely prevented by ADAMTS13 and NAC. Inhibition of FXI had no significant effect on molecular imaging signal or plaque morphology. CONCLUSIONS: Plaque inflammatory activation in remote arteries after MI is strongly influenced by VWF-mediated platelet adhesion to the endothelium. These findings support investigation into new secondary preventive therapies for reducing non-culprit artery events after MI.


Subject(s)
ADAMTS13 Protein , Myocardial Infarction , von Willebrand Factor , Animals , von Willebrand Factor/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/complications , ADAMTS13 Protein/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Mice , Plaque, Atherosclerotic/pathology , P-Selectin/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Male , Molecular Imaging , Aorta/pathology , Aorta/drug effects , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Mice, Inbred C57BL
2.
Endocrinology ; 165(5)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38578949

ABSTRACT

OBJECTIVES: Growth factor receptor bound protein 7 (GRB7) is a multidomain signaling adaptor. Members of the Grb7/10/14 family, specifically Gbrb10/14, have important roles in metabolism. We ablated the Grb7 gene in mice to examine its metabolic function. METHODS: Global ablation of Grb7 in FVB/NJ mice was generated. Growth, organ weight, food intake, and glucose homeostasis were measured. Insulin signaling was examined by Western blotting. Fat and lean body mass was measured by nuclear magnetic resonance, and body composition after fasting or high-fat diet was assessed. Energy expenditure was measured by indirect calorimetry. Expression of adiposity and lipid metabolism genes was measured by quantitative PCR. RESULTS: Grb7-null mice were viable, fertile, and without obvious phenotype. Grb7 ablation improved glycemic control and displayed sensitization to insulin signaling in the liver. Grb7-null females but not males had increased gonadal white adipose tissue mass. Following a 12-week high-fat diet, Grb7-null female mice gained fat body mass and developed relative insulin resistance. With fasting, there was less decrease in fat body mass in Grb7-null female mice. Female mice with Grb7 ablation had increased baseline food intake, less energy expenditure, and displayed a decrease in the expression of lipolysis and adipose browning genes in gonadal white adipose tissue by transcript and protein analysis. CONCLUSION: Our study suggests that Grb7 is a negative regulator of glycemic control. Our results reveal a role for Grb7 in female mice in the regulation of the visceral adipose tissue mass, a powerful predictor of metabolic dysfunction in obesity.


Subject(s)
Abdominal Fat , Energy Metabolism , GRB7 Adaptor Protein , Insulin , Mice, Knockout , Signal Transduction , Animals , Female , Male , Mice , Abdominal Fat/metabolism , Blood Glucose/metabolism , Body Composition/genetics , Diet, High-Fat , Energy Metabolism/genetics , GRB7 Adaptor Protein/genetics , GRB7 Adaptor Protein/metabolism , Insulin/metabolism , Insulin Resistance/genetics
3.
Commun Biol ; 6(1): 890, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644104

ABSTRACT

Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is a fatty acid oxidation disorder (FAOD) caused by a pathogenic variant, c.1528 G > C, in HADHA encoding the alpha subunit of trifunctional protein (TFPα). Individuals with LCHADD develop chorioretinopathy and peripheral neuropathy not observed in other FAODs in addition to the more ubiquitous symptoms of hypoketotic hypoglycemia, rhabdomyolysis and cardiomyopathy. We report a CRISPR/Cas9 generated knock-in murine model of G1528C in Hadha that recapitulates aspects of the human LCHADD phenotype. Homozygous pups are less numerous than expected from Mendelian probability, but survivors exhibit similar viability with wildtype (WT) littermates. Tissues of LCHADD homozygotes express TFPα protein, but LCHADD mice oxidize less fat and accumulate plasma 3-hydroxyacylcarnitines compared to WT mice. LCHADD mice exhibit lower ketones with fasting, exhaust earlier during treadmill exercise and develop a dilated cardiomyopathy compared to WT mice. In addition, LCHADD mice exhibit decreased visual performance, decreased cone function, and disruption of retinal pigment epithelium. Neurological function is affected, with impaired motor function during wire hang test and reduced open field activity. The G1528C knock-in mouse exhibits a phenotype similar to that observed in human patients; this model will be useful to explore pathophysiology and treatments for LCHADD in the future.


Subject(s)
Cardiomyopathies , Lipid Metabolism, Inborn Errors , Rhabdomyolysis , Humans , Animals , Mice , Disease Models, Animal , Cardiomyopathies/genetics , Lipid Metabolism, Inborn Errors/genetics , Rhabdomyolysis/genetics , Mitochondrial Trifunctional Protein, alpha Subunit
4.
Arterioscler Thromb Vasc Biol ; 43(6): 1041-1053, 2023 06.
Article in English | MEDLINE | ID: mdl-37128919

ABSTRACT

BACKGROUND: In reperfused myocardial infarction, VWF (von Willebrand factor)-mediated platelet adhesion contributes to impaired microvascular reflow and possibly also to postmyocardial infarction inflammation. We hypothesized that postischemic thromboinflammatory processes are worsened by elevated LDL (low-density lipoprotein) cholesterol. METHODS: Myocardial ischemia-reperfusion or sham procedure was performed in wild-type mice and hyperlipidemic mice deficient for the LDL receptor and Apobec-1 (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-1; DKO [double knockout]). DKO subgroups were treated with N-acetylcysteine, which inhibits pro-adhesive VWF multimers or with recombinant ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin motifs-13), which enzymatically cleaves endothelial surface-associated VWF. Myocardial contrast echocardiography perfusion imaging and molecular imaging for VWF, platelet glycoprotein Ibα, and leukocyte CD18 (cluster of differentiation) were performed 30 minutes post-reperfusion. Histology, infarct sizing, and echocardiography were performed at 1.5 or 72 hours; late echocardiography was performed at day 21. RESULTS: After ischemia-reperfusion, DKO compared with wild-type mice had ≈2-fold higher (P<0.05) risk area signal for microvascular platelet adhesion, VWF, and CD18; greater impairment in microvascular reflow, and 2-fold larger infarct size. Treatment of DKO mice with N-acetylcysteine and ADAMTS13 reduced molecular imaging signal for microvascular platelet adhesion, VWF, and CD18; improved early microvascular reflow; and reduced eventual infarct size. ADAMTS13 suppressed the postmyocardial infarction neutrophil and monocyte infiltration, enhanced the time-dependent recovery of left ventricular systolic function, and prevented late left ventricular remodeling. CONCLUSIONS: In reperfused myocardial infarction, elevated LDL cholesterol promotes thromboinflammation through excess microvascular endothelial VWF and platelet adhesion, resulting in less microvascular reflow and larger infarct size. In the presence of elevated LDL cholesterol, therapies that suppress endothelial-associated VWF can promote recovery of left ventricular function and protect against remodeling.


Subject(s)
Myocardial Infarction , Thromboinflammation , Animals , Mice , Acetylcysteine , ADAMTS13 Protein/genetics , Cholesterol, LDL , Inflammation , Ischemia , Myocardial Infarction/drug therapy , Myocardial Infarction/genetics , von Willebrand Factor/genetics
5.
Stem Cell Reports ; 17(12): 2595-2609, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36332628

ABSTRACT

Maternal obesity adversely impacts the in utero metabolic environment, but its effect on fetal hematopoiesis remains incompletely understood. During late development, the fetal bone marrow (FBM) becomes the major site where macrophages and B lymphocytes are produced via differentiation of hematopoietic stem and progenitor cells (HSPCs). Here, we analyzed the transcriptional landscape of FBM HSPCs at single-cell resolution in fetal macaques exposed to a maternal high-fat Western-style diet (WSD) or a low-fat control diet. We demonstrate that maternal WSD induces a proinflammatory response in FBM HSPCs and fetal macrophages. In addition, maternal WSD consumption suppresses the expression of B cell development genes and decreases the frequency of FBM B cells. Finally, maternal WSD leads to poor engraftment of fetal HSPCs in nonlethally irradiated immunodeficient NOD/SCID/IL2rγ-/- mice. Collectively, these data demonstrate for the first time that maternal WSD impairs fetal HSPC differentiation and function in a translationally relevant nonhuman primate model.


Subject(s)
Diet, Western , Stem Cells , Female , Pregnancy , Humans , Mice , Animals , Macaca mulatta , Mice, Inbred NOD , Mice, SCID , Diet, Western/adverse effects
6.
JACC Basic Transl Sci ; 7(7): 642-655, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35958695

ABSTRACT

We hypothesized that excess endothelial-associated von Willebrand factor (vWF) and secondary platelet adhesion contribute to aortic valve stenosis (AS). We studied hyperlipidemic mice lacking ADAMTS13 (LDLR -/- AD13 -/- ), which cleaves endothelial-associated vWF multimers. On echocardiography and molecular imaging, LDLR -/- AD13 -/- compared with control strains had increased aortic endothelial vWF and platelet adhesion and developed hemodynamically significant AS, arterial stiffening, high valvulo-aortic impedance, and secondary load-dependent reduction in LV systolic function. Histology revealed leaflet thickening and calcification with valve interstitial cell myofibroblastic and osteogenic transformation, and evidence for TGFß1 pathway activation. We conclude that valve leaflet endothelial vWF-platelet interactions promote AS through juxtacrine platelet signaling.

7.
J Am Soc Echocardiogr ; 34(4): 433-442.e3, 2021 04.
Article in English | MEDLINE | ID: mdl-33253812

ABSTRACT

BACKGROUND: Echocardiographic molecular imaging techniques are beginning to be applied to evaluate preclinical efficacy of new drugs. In a large clinical trial, anti-interleukin-1ß (IL-1ß) immunotherapy reduced atherosclerotic events, yet treatment effects were modest, and the mechanisms of action were not fully elucidated. We tested the hypothesis that echocardiographic molecular imaging can assess changes in vascular thromboinflammatory status in response to anti-IL-1ß therapy. METHODS: In wild-type and atherosclerotic mice deficient for the low-density lipoprotein-receptor and Apobec-1, closed-chest myocardial infarction (MI) was performed to mimic high-risk clinical cohorts. Control animals had sham surgery. Post-MI animals were randomized to either no therapy or anti-IL-1ß immunotherapy, which was continued weekly. At post-MI day 3 or 21, in vivo ultrasound molecular imaging of aortic VCAM-1, P-selectin, von Willebrand factor A1-domain, and platelet GPIbα in the thoracic aorta was performed. Aortic histology and NF-κB activity were assessed in atherosclerotic mice. RESULTS: In both atherosclerotic and wild-type mice, MI produced a several-fold increase (P < .05) in aortic molecular signals for P-selectin, VCAM-1, von Willebrand factor, and GPIbα. In atherosclerotic mice, signal remained elevated at day 21. Anti-IL-1ß therapy completely abolished the post-MI increase in signal for all endothelial targets (P < .05 vs nontreated) at day 3 and 21. In atherosclerotic mice, MI triggered an increase in aortic plaque growth and macrophage content, a decrease in plaque collagen, and elevated aortic NF-κB (P < .05 for all changes). All of these remote plaque adverse changes were inhibited by anti-IL-1ß therapy. CONCLUSIONS: Echocardiographic molecular imaging of the vascular endothelium can quantify the beneficial effects of therapies designed to suppress the proatherosclerotic arterial thromboinflammatory effects of alarmins such as IL-1ß. This approach could potentially be used to evaluate the biologic variables that influence response in preclinical studies, and possibly to select patients most likely to benefit from therapy.


Subject(s)
Atherosclerosis , Animals , Disease Models, Animal , Echocardiography , Humans , Immunotherapy , Mice , Molecular Imaging
8.
JACC Basic Transl Sci ; 5(10): 1017-1028, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33145464

ABSTRACT

This study used in vivo molecular imaging to characterize endotheliall activation attributable to von Willebrand factor (vWF)-mediated platelet adhesion in atherosclerosis. In atherosclerotic mice lacking the low-density lipoprotein receptor on Western diet, the additional genetic deletion of the ADAMTS13, which cleaves endothelial-associated vWF, produced greater aortic molecular imaging signal for not only vWF and platelets, but also for endothelial adhesion molecules VCAM1 and P-selectin, larger plaque size, and lower aortic distensibility. Sustained ADAMTS13 therapy reduced signal for all 4 molecular targets and plaque size. We conclude that excess endothelial-associated vWF contributes to not only platelet adhesion, but also to up-regulation of endothelial cell adhesion molecules.

9.
J Am Soc Echocardiogr ; 33(8): 1023-1031.e2, 2020 08.
Article in English | MEDLINE | ID: mdl-32532642

ABSTRACT

BACKGROUND: Ultrasound-mediated cavitation of microbubble contrast agents produces high intravascular shear. We hypothesized that microbubble cavitation increases myocardial microvascular perfusion through shear-dependent purinergic pathways downstream from ATP release that is immediate and sustained through cellular ATP channels such as Pannexin-1. METHODS: Quantitative myocardial contrast echocardiography perfusion imaging and in vivo optical imaging of ATP was performed in wild-type and Pannexin-1-deficient (Panx1-/-) mice before and 5 and 30 minutes after 10 minutes of ultrasound-mediated (1.3 MHz, mechanical index 1.3) myocardial microbubble cavitation. Flow augmentation in a preclinical model closer to humans was evaluated in rhesus macaques undergoing myocardial contrast echocardiography perfusion imaging after high-power cavitation in the apical four-chamber plane for 10 minutes. RESULTS: Microbubble cavitation in wild-type mice (n = 7) increased myocardial perfusion by 64% ± 25% at 5 minutes and 95% ± 55% at 30 minutes compared with baseline (P < .05). In Panx1-/- mice (n = 5), perfusion increased by 28% ± 26% at 5 minutes (P = .04) but returned to baseline at 30 minutes. Myocardial ATP signal in wild-type (n = 7) mice undergoing cavitation compared with sham-treated controls (n = 3) was 450-fold higher at 5 minutes and 90-fold higher at 30 minutes after cavitation (P < .001). The ATP signal in Panx1-/- mice (n = 4) was consistently 10-fold lower than that in wild-type mice and was similar to sham controls at 30 minutes. In macaques (n = 8), myocardial perfusion increased twofold in the cavitation-exposed four-chamber plane, similar in degree to that produced by adenosine, but did not increase in the control two-chamber plane. CONCLUSIONS: Cavitation of microbubbles in the myocardial microcirculation produces an immediate release of ATP, likely from cell microporation, as well as sustained release, which is channel dependent and responsible for persistent flow augmentation. These findings provide mechanistic insight by which cavitation improves perfusion and reduces infarct size in patients with myocardial infarction.


Subject(s)
Contrast Media , Microbubbles , Animals , Connexins , Macaca mulatta , Mice , Mice, Inbred C57BL , Myocardium , Nerve Tissue Proteins , Ultrasonography
10.
Blood ; 133(14): 1597-1606, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30692122

ABSTRACT

The third-generation tyrosine kinase inhibitor (TKI) ponatinib has been associated with high rates of acute ischemic events. The pathophysiology responsible for these events is unknown. We hypothesized that ponatinib produces an endothelial angiopathy involving excessive endothelial-associated von Willebrand factor (VWF) and secondary platelet adhesion. In wild-type mice and ApoE-/- mice on a Western diet, ultrasound molecular imaging of the thoracic aorta for VWF A1-domain and glycoprotein-Ibα was performed to quantify endothelial-associated VWF and platelet adhesion. After treatment of wild-type mice for 7 days, aortic molecular signal for endothelial-associated VWF and platelet adhesion were five- to sixfold higher in ponatinib vs sham therapy (P < .001), whereas dasatinib had no effect. In ApoE-/- mice, aortic VWF and platelet signals were two- to fourfold higher for ponatinib-treated compared with sham-treated mice (P < .05) and were significantly higher than in treated wild-type mice (P < .05). Platelet and VWF signals in ponatinib-treated mice were significantly reduced by N-acetylcysteine and completely eliminated by recombinant ADAMTS13. Ponatinib produced segmental left ventricular wall motion abnormalities in 33% of wild-type and 45% of ApoE-/- mice and corresponding patchy perfusion defects, yet coronary arteries were normal on angiography. Instead, a global microvascular angiopathy was detected by immunohistochemistry and by intravital microscopy observation of platelet aggregates and nets associated with endothelial cells and leukocytes. Our findings reveal a new form of vascular toxicity for the TKI ponatinib that involves VWF-mediated platelet adhesion and a secondary microvascular angiopathy that produces ischemic wall motion abnormalities. These processes can be mitigated by interventions known to reduce VWF multimer size.


Subject(s)
Cardiovascular Diseases/chemically induced , Fusion Proteins, bcr-abl/antagonists & inhibitors , Imidazoles/toxicity , Pyridazines/toxicity , Thrombotic Microangiopathies/complications , Animals , Aorta/metabolism , Endothelium/metabolism , Humans , Ischemia/chemically induced , Mice , Mice, Knockout , Platelet Adhesiveness/drug effects , Protein Kinase Inhibitors/toxicity , Ventricular Dysfunction/chemically induced , von Willebrand Factor/drug effects , von Willebrand Factor/metabolism
11.
Circ Cardiovasc Imaging ; 11(11): e007913, 2018 11.
Article in English | MEDLINE | ID: mdl-30571316

ABSTRACT

BACKGROUND: Complete mechanistic understanding of impaired microvascular reflow after myocardial infarction will likely lead to new therapies for reducing infarct size. Myocardial contrast echocardiography perfusion imaging and molecular imaging were used to evaluate the contribution of microvascular endothelial-associated VWF (von Willebrand factor) and platelet adhesion to microvascular no-reflow. METHODS AND RESULTS: Myocardial infarction was produced by transient LAD ligation in WT (wild type) mice, WT mice treated with the VWF proteolytic enzyme ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13), and ADAMTS13-deficient (ADAMTS13-/-) mice. Myocardial contrast echocardiography perfusion imaging and molecular imaging of VWF and platelet GP (glycoprotein) Ibα were performed 30 minutes after ischemia-reperfusion. Infarct size was measured at 3 days. Mortality during ischemia-reperfusion incrementally increased in WT+ADAMTS13, WT, and ADAMTS13-/- mice (14%, 43%, and 63%, respectively; P<0.05). For WT mice, molecular imaging signal for platelets and VWF in the postischemic risk area was 4- to 5-fold higher ( P<0.05) compared with both the remote nonischemic regions or to sham-treated mice. Signal enhancement in the risk area was completely abolished by ADAMTS13 treatment for both platelets (12.8±3.3 versus -1.0±4.4 IU; P<0.05) and VWF (13.9±4.0 versus -1.0±3.0 IU; P<0.05). ADAMTS13-/- compared with WT mice had 2- to 3-fold higher risk area signal for platelets (33.1±8.5 IU) and VWF (30.9±1.9 IU). Microvascular reflow in the risk area incrementally decreased for WT+ADAMTS13, WT, and ADAMTS13-/- mice ( P<0.05), whereas infarct size incrementally increased ( P<0.05). CONCLUSIONS: Mechanistic information on microvascular no-reflow is possible by combining perfusion and molecular imaging. In reperfused myocardial infarction, excess endothelial-associated VWF and secondary platelet adhesion in the risk area microcirculation contribute to impaired reflow and are modifiable.


Subject(s)
Blood Platelets/physiology , Molecular Imaging/methods , No-Reflow Phenomenon/diagnosis , Platelet Adhesiveness/physiology , von Willebrand Factor/metabolism , Animals , Disease Models, Animal , Echocardiography , Immunohistochemistry , Mice , Mice, Inbred C57BL , No-Reflow Phenomenon/blood , No-Reflow Phenomenon/physiopathology
12.
J Am Soc Echocardiogr ; 31(11): 1252-1259.e1, 2018 11.
Article in English | MEDLINE | ID: mdl-30213420

ABSTRACT

BACKGROUND: Ultrasound molecular imaging was used to evaluate the therapeutic effects of antioxidant therapy with EUK-207, which has superoxide dismutase and catalase activities, on suppressing high-risk atherosclerotic features. METHODS: Mice with age-dependent atherosclerosis produced by deletion of the low-density lipoprotein receptor and Apobec-1 were studied at 20 and 40 weeks of age. EUK-207 or vehicle was administered for the preceding 8 weeks. Therapy for 28 weeks was also studied for 40-week-old mice. Ultrasound molecular imaging of the thoracic aorta was performed with contrast agents targeted to endothelial P-selectin, von Willebrand factor A1-domain, and platelet glycoprotein Ibα or control agent. Aortic plaque area and macrophage content were assessed by histology. RESULTS: In 20-week-old double-knockout mice, EUK-207 compared with sham therapy produced only nonsignificant trends for reduction in molecular imaging signal for endothelial P-selectin, von Willebrand factor A1-domain, and platelet adhesion. At 40 weeks, EUK-207 given for 8 or 28 weeks significantly (P < .05) reduced signal for all three endothelial-associated events essentially to background levels, with the exception of glycoprotein Ibα signal after 8 weeks (P = .06). On aortic histology, EUK-207 therapy for 8 weeks did not affect plaque area or macrophage content at either age. However, EUK-207 for 28 weeks almost completely suppressed plaque development (350 ± 258 vs 4 ± 6 × 103 µm2, P = .014) and macrophage content (136 ± 103 vs 3 ± 2 × 103 µm2, P = .002) compared with control mice at 40 weeks. CONCLUSIONS: Molecular imaging can be used to assess vascular responses to antioxidants and has demonstrated that certain antioxidants reduce vascular endothelial activation and platelet adhesion, but reductions in plaque size and macrophage content occurs only with long-duration therapy that is started early.


Subject(s)
Antioxidants/therapeutic use , Aorta, Thoracic/diagnostic imaging , Aortic Diseases/drug therapy , Atherosclerosis/drug therapy , Contrast Media/pharmacology , Molecular Imaging/methods , Ultrasonography/methods , Animals , Aortic Diseases/diagnosis , Atherosclerosis/diagnosis , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Knockout , Treatment Outcome
13.
J Am Coll Cardiol ; 72(9): 1015-1026, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30139430

ABSTRACT

BACKGROUND: In the months after acute myocardial infarction (MI), risk for acute atherothrombotic events in nonculprit arteries increases several fold. OBJECTIVES: This study investigated whether sustained proinflammatory and prothrombotic endothelial alterations occur in remote vessels after MI. METHODS: Wild-type mice, atherosclerotic mice with double knockout (DKO) of the low-density lipoprotein receptor and Apobec-1, and DKO mice treated with the Nox-inhibitor apocynin were studied at baseline and at 3 and 21 days after closed-chest MI. Ultrasound molecular imaging of P-selectin, vascular cell adhesion molecule (VCAM)-1, von Willebrand factor (VWF) A1-domain, and platelet GPIbα was performed. Intravital microscopy was used to characterize post-MI leukocyte and platelet recruitment in the remote microcirculation after MI. RESULTS: Aortic molecular imaging for P-selectin, VCAM-1, VWF-A1, and platelets was increased several-fold (p < 0.01) 3 days post-MI for both wild-type and DKO mice. At 21 days, these changes resolved in wild-type mice but persisted in DKO mice. Signal for platelet adhesion was abolished 1 h after administration of ADAMTS13, which regulates VWF multimerization. In DKO and wild-type mice, apocynin significantly attenuated the post-MI increase for molecular targets, and platelet depletion significantly reduced P-selectin and VCAM-1 signal. On intravital microscopy, MI resulted in remote vessel leukocyte adhesion and platelet string or net complexes. On histology, high-risk inflammatory features in aortic plaque increased in DKO mice 21 days post-MI, which were completely prevented by apocynin. CONCLUSIONS: Acute MI stimulates a spectrum of changes in remote vessels, including up-regulation of endothelial inflammatory adhesion molecules and platelet-endothelial adhesion from endothelial-associated VWF multimers. These remote arterial alterations persist longer in the presence of hyperlipidemia, are associated with accelerated plaque growth and inflammation, and are attenuated by Nox inhibition.


Subject(s)
Myocardial Infarction/blood , Animals , Blood Cell Count , Disease Models, Animal , Mice , P-Selectin/blood , Platelet Activation , Vascular Cell Adhesion Molecule-1/blood , von Willebrand Factor/metabolism
14.
JACC Cardiovasc Imaging ; 9(8): 937-46, 2016 08.
Article in English | MEDLINE | ID: mdl-27318722

ABSTRACT

OBJECTIVES: This study hypothesized that microvascular retention of phosphatidylserine-containing microbubbles (MB-PS) would allow detection of recent but resolved myocardial ischemia with myocardial contrast echocardiographic (MCE) molecular imaging. BACKGROUND: Techniques for ischemic memory imaging which can detect and spatially assess resolved myocardial ischemia are being developed for rapid evaluation of patients with chest pain. METHODS: MCE molecular imaging with MB-PS was performed 1.5 h, 3.0 h, and 6.0 h after brief (10 min) myocardial ischemia in mice; data were compared to selectin-targeted microbubbles. MCE molecular imaging with Sonazoid (GE Healthcare, Amersham, United Kingdom), a commercially produced phosphatidylserine (PS) - containing agent, was performed in separate mice at 1.5 h and 3.0 h after ischemia-reperfusion; and in dogs undergoing 135 min of ischemia and 60 min of reflow as well as in closed-chest nonischemic control dogs. The mechanism for MB-PS attachment was assessed by intravital microscopy of post-ischemic muscle and by flow cytometry analysis of cell-MB interactions. RESULTS: In mice undergoing ischemia-reperfusion without infarction, signal enhancement in the risk area for MB-PS and p-selectin glycoprotein ligand-1-targeted microbubbles was similar at reflow times of 1.5 h (23.3 ± 7.3 IU vs. 30.7 ± 4.1 IU), 3.0 h (42.2 ± 6.2 IU vs. 33.9 ± 7.4 IU), and 6.0 h (24.1 ± 4.3 IU vs. 25.5 ± 4.7 IU). For both agents, signal in the risk area was significantly (p < 0.05) higher than remote region at all reflow times. Sonazoid also produced strong risk area enhancement at 1.5 h (34.7 ± 5.0 IU) and 3.0 h (52.5 ± 4.5 IU) which was approximately 3-fold greater than in the control region, and which correlated spatially with the microsphere-derived risk area. In dogs, Sonazoid signal in the risk area was >5-fold higher than in closed-chest control myocardium (42.2 ± 8.1 IU vs. 7.9 ± 3.3 IU; p < 0.001). Mechanistic studies indicated that MB-PS attached directly to venular endothelium and adherent leukocytes which was dependent on serum complement components C1q and C3. CONCLUSIONS: Ischemic memory imaging with MCE is possible using MB-PS which may obviate the need for ligand-directed targeting.


Subject(s)
Complement System Proteins/metabolism , Contrast Media/administration & dosage , Coronary Vessels/metabolism , Echocardiography/methods , Ferric Compounds/administration & dosage , Iron/administration & dosage , Microbubbles , Molecular Imaging/methods , Myocardial Infarction/diagnostic imaging , Myocardial Reperfusion Injury/diagnostic imaging , Oxides/administration & dosage , Phosphatidylserines/administration & dosage , Animals , Complement C1q/metabolism , Complement C3/metabolism , Contrast Media/metabolism , Coronary Vessels/pathology , Disease Models, Animal , Dogs , Ferric Compounds/metabolism , Flow Cytometry , Intravital Microscopy , Iron/metabolism , Male , Membrane Glycoproteins/administration & dosage , Membrane Glycoproteins/metabolism , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Oxides/metabolism , Phosphatidylserines/metabolism , Predictive Value of Tests , Time Factors
15.
J Am Soc Echocardiogr ; 27(2): 192-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24315764

ABSTRACT

BACKGROUND: Small animal models of ischemic left ventricular (LV) dysfunction are important for the preclinical optimization of stem cell therapy. The aim of this study was to test the hypothesis that temporal changes in LV function and regional perfusion after cell therapy can be assessed in mice using echocardiographic imaging. METHODS: Wild-type mice (n = 25) were studied 7 and 28 days after permanent ligation of the left anterior descending coronary artery. Animals were randomized to receive closed-chest ultrasound-guided intramyocardial delivery of saline (n = 13) or 5 × 10(5) multipotential adult progenitor cells (MAPCs; n = 12) on day 7. LV end-diastolic and end-systolic volumes, LV ejection fraction, and stroke volume were measured using high-frequency echocardiography. Multiplanar assessments of perfusion and defect area size were made using myocardial contrast echocardiography. RESULTS: Between days 7 and 28, MAPC-treated animals had 40% to 50% reductions in defect size (P < .001) and 20% to 30% increases in total perfusion (P < .01). Perfusion did not change in nontreated controls. Both LV end-diastolic and end-systolic volumes increased between days 7 and 28 in both groups, but LV end-systolic volume increased to a lesser degree in MAPC-treated compared with control mice (+4.2 ± 7.9 vs +19.2 ± 22.0 µL, P < .05). LV ejection fraction increased in the MAPC-treated mice and decreased in control mice (+3.0 ± 4.3% vs -5.6 ± 5.9%, P < .01). There was a significant linear relation between the change in LV ejection fraction and the change in either defect area size or total perfusion. CONCLUSIONS: High-frequency echocardiography and myocardial contrast echocardiography in murine models of ischemic LV dysfunction can be used to assess the response to stem cell therapy and to characterize the relationship among spatial flow, ventricular function, and ventricular remodeling.


Subject(s)
Echocardiography , Myocardial Ischemia/diagnostic imaging , Myocardial Ischemia/therapy , Stem Cell Transplantation , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/therapy , Animals , Disease Models, Animal , Mice , Mice, Nude , Multipotent Stem Cells/transplantation , Myocardial Ischemia/complications , Myocardial Perfusion Imaging/methods , Random Allocation , Rats , Ventricular Dysfunction, Left/etiology , Ventricular Remodeling
16.
Am J Physiol Heart Circ Physiol ; 298(2): H679-87, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20008276

ABSTRACT

Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs), primarily 14,15-EET. EETs are derived from arachidonic acid via P-450 epoxygenases and are cardioprotective. We tested the hypothesis that sEH deficiency and pharmacological inhibition elicit tolerance to ischemia via EET-mediated STAT3 signaling in vitro and in vivo. In addition, the relevance of single nucleotide polymorphisms (SNPs) of EPHX2 (the gene encoding sEH) on tolerance to oxygen and glucose deprivation and reoxygenation and glucose repletion (OGD/RGR) was assessed in male C57BL\6J (WT) or sEH knockout (sEHKO) cardiomyocytes by using transactivator of transcription (TAT)-mediated transduction with sEH mutant proteins. Cell death and hydrolase activity was lower in Arg287Gln EPHX2 mutants vs. nontransduced controls. Excess 14,15-EET and SEH inhibition did not improve cell survival in Arg287Gln mutants. In WT cells, the putative EET receptor antagonist, 14,15-EEZE, abolished the effect of 14,15-EET and sEH inhibition. Cotreatment with 14,15-EET and SEH inhibition did not provide increased protection. In vitro, STAT3 inhibition blocked 14,15-EET cytoprotection, but not the effect of SEH inhibition. However, STAT3 small interfering RNA (siRNA) abolished cytoprotection by 14,15-EET and sEH inhibition, but cells pretreated with JAK2 siRNA remained protected. In vivo, STAT3 inhibition abolished 14,15-EET-mediated infarct size reduction. In summary, the Arg287Gln mutation is associated with improved tolerance against ischemia in vitro, and inhibition of sEH preserves cardiomyocyte viability following OGD/RGR via an EET-dependent mechanism. In vivo and in vitro, 14,15-EET-mediated protection is mediated in part by STAT3.


Subject(s)
Epoxide Hydrolases/antagonists & inhibitors , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/pathology , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/metabolism , Animals , Cell Survival/physiology , Cells, Cultured , Disease Models, Animal , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Janus Kinases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Polymorphism, Single Nucleotide/genetics
17.
Am J Physiol Heart Circ Physiol ; 295(5): H2128-34, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18835921

ABSTRACT

Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. EETs are formed from arachidonic acid during myocardial ischemia and play a protective role against ischemic cell death. Deletion of sEH has been shown to be protective against myocardial ischemia in the isolated heart preparation. We tested the hypothesis that sEH inactivation by targeted gene deletion or pharmacological inhibition reduces infarct size (I) after regional myocardial ischemia-reperfusion injury in vivo. Male C57BL\6J wild-type or sEH knockout mice were subjected to 40 min of left coronary artery (LCA) occlusion and 2 h of reperfusion. Wild-type mice were injected intraperitoneally with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE), a sEH inhibitor, 30 min before LCA occlusion or during ischemia 10 min before reperfusion. 14,15-EET, the main substrate for sEH, was administered intravenously 15 min before LCA occlusion or during ischemia 5 min before reperfusion. The EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE) was given intravenously 15 min before reperfusion. Area at risk (AAR) and I were assessed using fluorescent microspheres and triphenyltetrazolium chloride, and I was expressed as I/AAR. I was significantly reduced in animals treated with AUDA-BE or 14,15-EET, independent of the time of administration. The cardioprotective effect of AUDA-BE was abolished by the EET antagonist 14,15-EEZE. Immunohistochemistry revealed abundant sEH protein expression in left ventricular tissue. Strategies to increase 14,15-EET, including sEH inactivation, may represent a novel therapeutic approach for cardioprotection against myocardial ischemia-reperfusion injury.


Subject(s)
Adamantane/analogs & derivatives , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/deficiency , Gene Deletion , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Urea/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/administration & dosage , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/metabolism , Adamantane/administration & dosage , Adamantane/pharmacology , Animals , Disease Models, Animal , Enzyme Inhibitors/administration & dosage , Epoxide Hydrolases/genetics , Female , Heart Ventricles/drug effects , Heart Ventricles/enzymology , Injections, Intraperitoneal , Injections, Intravenous , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/enzymology , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Time Factors , Urea/administration & dosage , Urea/pharmacology
18.
Am J Physiol Heart Circ Physiol ; 295(1): H409-15, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18502904

ABSTRACT

There is evidence for differences in the response to the treatment of cardiovascular disease in men and women. In addition, there are conflicting results regarding the effectiveness of pharmacologically induced protection or ischemic preconditioning in females. We investigated whether the ability of Met(5)-enkephalin (ME) to reduce cell death after oxygen-glucose deprivation (OGD) is influenced by the presence of 17beta-estradiol (E(2)) in a nitric oxide (NO)- and estrogen receptor-dependent manner. On postnatal day 7 to 8, murine cardiomyocytes from wild-type or inducible NO synthase (iNOS) knockout mice were separated by sex, isolated by collagenase digestion, cultured for 24 h, and subjected to 90 min OGD and 180 min reoxygenation at 37 degrees C (n = 4 to 5 replicates). Cell cultures were incubated in E(2) for 15 min or 24 h before OGD. ME was used to increase cell survival. Cell death was assessed by propidium iodide. More than 300 cells were examined for each treatment. Data are presented as means +/- SE. As a result, in both sexes, ME-induced cell survival was lost in the presence of E(2), and the ability of ME to improve cell survival was restored after treatment with the estrogen receptor antagonist ICI-182780. Furthermore, iNOS was necessary for ME to increase cell survival following OGD in vitro. We conclude that ME-induced reduction in cell death is abolished by E(2) in a sex-independent manner via activation of estrogen receptors, and this interaction is dependent on iNOS.


Subject(s)
Enkephalin, Methionine/metabolism , Estradiol/metabolism , Glucose/deficiency , Myocytes, Cardiac/metabolism , Oxygen/metabolism , Receptors, Opioid, delta/metabolism , Animals , Animals, Newborn , Cell Death , Cell Hypoxia , Cell Survival , Cells, Cultured , Cytoprotection , Enzyme Inhibitors/pharmacology , Estradiol/analogs & derivatives , Estradiol/pharmacology , Estrogen Antagonists/pharmacology , Female , Fulvestrant , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Receptors, Opioid, delta/agonists , Sex Factors
19.
Am J Physiol Heart Circ Physiol ; 294(1): H302-10, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17982014

ABSTRACT

Met(5)-enkephalin (ME)-induced cardioprotection occurs via epidermal growth factor receptor (EGFR) transactivation with the subsequent activation of phosphatidylinositol 3-kinase (PI3K). In the present study, we investigated whether there is a sex difference in ME-elicited PI3K signaling. Neonatal murine cardiomyocytes were isolated by collagenase digestion and subjected to 90 min hypoxia and 180 min reoxygenation at 37 degrees C (n = 5 to 7 replicates). PI3K/Akt signaling was interrogated using pharmacological inhibitors and small interfering RNA (siRNA). Cell death was assessed by propidium iodide. More than 300 cells were examined for each treatment. The data are presented as means +/- SE. There was not a sex difference in the basal content of total Akt. ME (100 microM) elicited comparable protection in both sexes. Wortmannin and the nonselective Akt inhibitor IV completely abolished ME-induced protection in male cardiomyocytes but only attenuated protection in female cardiomyocytes. Isoform-selective knockdown of Akt in males with siRNAs against Akt1/2 completely abolished ME-induced cardioprotection, whereas the siRNAs against Akt3 only attenuated protection of approximately 40%. In contrast, in females the siRNAs against Akt1/2 attenuated and against Akt3 eliminated ME-induced cardioprotection. There is not a sex difference in the degree of ME-induced protection, and there is a sex difference in the cardioprotective signaling pathways after the administration of ME; ME-induced cardioprotection in males primarily utilizes a PI3K/Akt1/2 pathway and in females primarily utilizes a PI3K/Akt3 pathway. The incomplete loss of protection in females following the blockade of PI3K suggests that additional factors may facilitate the maintenance or function of activated Akt.


Subject(s)
Enkephalin, Methionine/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Androstadienes/pharmacology , Animals , Animals, Newborn , Cell Survival , Cells, Cultured , Chromones/pharmacology , Female , Male , Mice , Morpholines/pharmacology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/enzymology , Myocardium/pathology , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction/drug effects , Time Factors , Wortmannin
SELECTION OF CITATIONS
SEARCH DETAIL
...